A New Classification of Surfaces of Revolution in 3-dimensional Minkowski Space

نویسنده

  • V. MILANI
چکیده

In this paper we define surfaces of revolution of the 1st, 2nd and 3rd kind as space-like or time-like in 3-dimensional Minkowski space. Then by studying their Gauss maps, Laplacian operators and curvatures, we obtain a new classification of surfaces of revolution with pointwise 1-type Gauss map property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space

In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.

متن کامل

To Specify Surfaces of Revolution with Pointwise 1-type Gauss Map in 3-dimensional Minkowski Space

In this paper, by the studying of the Gauss map, Laplacian operator, curvatures of surfaces in R 1 and Bour’s theorem, we are going to identify surfaces of revolution with pointwise 1-type Gauss map property in 3−dimensional Minkowski space. Introduction The classification of submanifolds in Euclidean and Non-Euclidean spaces is one of the interesting topics in differential geometry and in this...

متن کامل

The harmonic evolute of a surface in Minkowski 3-space

In this paper we describe harmonic evolutes of surfaces in Minkowski 3-space. In particular, we study properties of harmonic evolutes of constant mean curvature surfaces and their relation to parallel surfaces. Furthermore, we study harmonic evolutes of surfaces of revolution. AMS subject classifications: 53A35, 53B30

متن کامل

Clairaut’s Theorem in Minkowski Space

Abstract. We consider some aspects of the geometry of surfaces of revolution in three-dimensional Minkowski space. First, we show that Clairaut’s theorem, which gives a well-known characterization of geodesics on a surface of revolution in Euclidean space, has an analogous result in three-dimensional Minkowski space. We then illustrate the significant differences between the two cases which ari...

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005